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MEASURABLE CROSS SECTIONS IN 

LOCALLY COMPACT GROUPS 

BY 

JOSEPH KUPKA 

ABSTRACT 

There are two principal theorems. The adjustment theorem asserts that a lifting 
may be changed on a set of measure zero so as to become slightly stronger. In 
conjunction with the standard lifting theorem, it yields generalizations (with 
shorter proofs) of a number of known results in the theory of strong liftings. It 
also inspires a characterization of strong liftings, when the measure is regular, 
by the fact that they induce upon every open set an artificial "closure" o1 that 
set which differs from it by a set of measure zero. The projection theorem 
asserts that, in the presence of a strict disintegration, a strong lifting may be 
transferred or "projected" from one topological measure space onto another. In 
conjunction with Losert's example, it yields regular Borel measures, carried on 
compact Hausdorff spaces of arbitrarily large weight, which everywhere fail to 
have the strong lifting property. It also provides the final link needed to obtain, 
with no separability assumptions, a measurable cross section (or right inverse) 
for the canonical map qJ : G -- ,  G / H ,  where G is an arbitrary locally compact 
group, and where H is an arbitrary closed subgroup of G. 

1. Introduction 

B e g i n n i n g  wi th  the  p a p e r  of  von  N e u m a n n  [23] (cf. [24, t h e o r e m  18, p. 372]),  it 

has  b e e n  c u s t o m a r y  to  o b t a i n  a m e a s u r e  t h e o r e t i c  l i f t ing  in a s t e p - b y - s t e p  

c o n s t r u c t i v e  m a n n e r ,  us ing  Z o r n ' s  l e m m a  o r  t r ans f in i t e  i n d u c t i o n  ([22], [14], [16, 

c h a p t e r  IV] ,  [28], [9], [7], e tc . ) .  A n  a l t e r n a t e  t h e m e  wh ich  is a t  l eas t  imp l i c i t  in 

the  l i t e r a t u r e  (see ,  fo r  e x a m p l e ,  [3, p r o p o s i t i o n  5, p. 407])  is to  o b t a i n  a l i f t ing  by  

t r a n s f o r m i n g  a p r e - e x i s t i h g  l i f t ing  in s o m e  fa sh ion .  I t  is th is  l a t t e r  t h e m e ,  as it 

a p p l i e s  to  the  c o n s t r u c t i o n  of  s t r o n g  l i f t ings ,  wh ich  we shal l  e x p l o r e  m o r e  fu l ly  in 

the  p r e s e n t  p a p e r .  T h e r e  a r e  t w o  p r i n c i p a l  resu l t s .  T h e  a d j u s t m e n t  t h e o r e m  

( T h e o r e m  2.1) a s se r t s  t ha t  a g iven  l i f t ing  m a y  be  " a d j u s t e d "  on  a se t  of  m e a s u r e  

z e r o  to  b e c o m e  s t r o n g  wi th  r e s p e c t  to  t ha t  set .  S i m p l e  in i tse l f ,  it y i e lds  
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generalizations (with short proofs) of a number of known results in the theory of 

strong liftings, some of whose constructive proofs are considerably longer; it also 

leads to a characterization (in Theorem 3.4) of the strong lifting property for 

regular measures which is obtained by "globalizing" the adjustment procedure. 

The projection theorem (Theorem 2.7) presents conditions under which a strong 

lifting may be "projected" from one space onto another. It yields (in Example 

3.2) a slight extension of Losert's counterexample to the strong lifting conjecture 

[20] and leads (in Section 4) to a general existence theorem for measurable cross 

sections in locally compact groups. 

All measures mentioned in this paper will be nonnegative, countably additive, 

not necessarily finite, and, unless specified otherwise, nonzero. A measure space 

is a triple (X, E, IX), where X is a nonempty set, where Y is a tr-algebra of subsets 

of X, and where IX is a measure with domain Y. We shall say that X constitutes 

the direct sum rood IX of a family {X~ } of pairwise disjoint subsets of X if, for all 
A _C X, the following conditions are satisfied: 

(1.1) A G E if and only if A n x~ E ~ for each index a ; 

(1.2) if A E ~ ,  then IX (A ) = E~ IX (A AXe),  where E~ denotes the 

supremum (in the extended real numbers) over the collection of 

finite sums. 

If 9- C_ E is a topology, then the quadruple (X, E, IX, 9-) will be referred to as a 

topological measure space. A topological measure space is complete if it is 

complete as a measure space; if 5r _C E is a tr-ring, the completion of 5r with 

respect to IX I.~ will be denoted by 5r A set A E E will be called a carrier of IX, 

and IX will be said to be carried on A if, for all U E 9-, we have IX(A n U ) > 0  

whenever A n U ~  Q. We declare that IX is regular if, for all A E ~,, we have 

(1.3) IX(A) = sup{ix(K): K closed; K C A}. 

When X is a locally compact Hausdorff space, we define ~8 (X) (resp. ~,~ (X)) to 

be the 6-ring (resp. g-ring) generated by the compact subsets of X, and we 

define ~t (X), the locally measurable sets, to be the o--algebra of all sets A such 

that A n E E ~,, (X) for all E E ~ (X). If a (standard) regular Borel measure IX 

has- been defined initially on ~ (X) or on ~3, (X), we assume that it has been 

extended to ~ (X) via the formula 

IX(E) = sup{ix(A): A E ~8 (X); A C E}. 

Clearly this extended measure tx will be regular in the sense of (1.3). Any lifting 

for Ix will be assumed to have domain E = ~ ( X ) ~ .  
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Set notation will be standard. In particular, we shall write A c for X \ A  and 

A A B  for ( A \ B ) U ( B I A ) .  Whether or not A and B are measurable, the 

relation A C , B  will mean that the set A \B  is/x-null. If A C , B  and B C , A ,  

then we shall write A ~ , B .  If E E'S', and if 5r  we let ,71E= 

{A N E ' A  E ~}, and we let ix I E denote the restriction of ix to I~15. 

A lifting for ix on (X, 5`) is a function p : E ~ 5" with the following properties, 

which hold for all A, B E E: 

(1.4) p ( A ) ~ , A ;  

(1.5) if A ~ , B ,  then p ( A ) = p ( B ) ;  

(1.6) p ( Q ) = Q  and p(X)=  X; 

(1.7) p(A 71 B) = p ( A ) A  p(B); 

(1.8) p(A U B) = p ( A ) U  o(B). 

If p satisfies (1.4)-(1.7), then p is called a density (for ix on (X,E)). If the 

measure space is topological with topology 3-, then a density or lifting p will be 

called strong (with respect to 3-) if 

(1.9) p(U) D U for all U E 3-. 

If such a lifting exists, then (X, E, ix, 3-) (or just # )  is said to have the strong lifting 
property. 

Let (X,E, tx) and (Y,Y, u) be measure spaces, let 6eC_x2 be a o'-ring, and let 

$:X---> Y satisfy (at least) the condition: for all y E Y, the inverse image 

ff-i({y}) is a nonempty element of Y.,. Then a family {ix~}y~ of measures on 

(X, 5) will be said to constitute a strict disintegration of ix with respect to u induced 
on (X, ~)  by ~ (cf. [19, definition 2.1, p. 8]) if the following conditions are 
satisfied: 

(1.10) 

(1.11) 

(1.12) 

and we have 

ix, (X) > 0 a.e. (u); 

ix,(tO-'((y})c)=O a.e. (u); 

for all A ~ oW, the function y ~ ixy (A) is u-measurable, 

[ 
ix(A) = J ixv (A )du(y). 

Strict disintegrations are known to exist mainly in the topological setting, where 

they are closel)~ tied in with strong liftings (see [16, theorem 5, p. 150] and [12]). 
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In view of [19, example 5.2, p. 32], it seems unlikely that (strict) disintegrations 

exist when 6e is not contained in the ~-ring of it-finite subsets of X. We shall be 

concerned with the following two examples, both of which are defined without 

reference to liftings. 

1.13. EXAMPLE. Let X and Y be compact HausdortI spaces, so that we may 

and shall define ~ ( X ) =  ~ ( X ) =  ~ ( X )  = ~ ( X ) ;  and le t /z  and i, be regular 

Borel measures on X and Y, respectively. Then by [17, theorem 2.1, p. 113], the 

product measure/z  x v can be realized as a (unique) regular Borel measure, and 

by [17, theorem 4.5, p. 119], the formula 

,,, (A)  = f gA(x,y)d~,(y) 

(where x E X and A E ~ (X x Y)) determines a strict disintegration o f /~  x v 

with respect to # induced on (X x Y, ~ ( X  x Y)) by the canonical projection r 

of X x Y onto X. �9 

1.14. EXAMPLE. Let G be a locally compact Hausdorff topological group, 

and let H be a closed subgroup of G. Let G/H denote the set of left cosets of G, 

which becomes a locally compact HausdortI space when endowed with the 

quotient topology induced by the canonical map ~b : G --~ G/H [1, p. 39]. Where 

convenient we shall write J/ in place of ~b(x). Now let ~ and /3 be left Haar  

measures and let A and 8 denote  the modular functions on G and H, 

respectively. By [1, theorem 2, p. 56] there is a strictly positive continuous 

function p defined on G such that p(xs) = A(s)~(s)-'p(x) for all x ~ G and 

s E H ;  and in consequence one may determine a quasi-invariant regular Borel 

measure A on G/H with respect to which there exists a strict disintegration of /z  

induced on (G, ~ (G))  by ft. To describe this disintegration, it is convenient to 

refer to [26, proposition 10.1, p. 482], which implies that, for all x ~ G and 

A E Go(G), the expression 

p(x ) ' f .  (s) x,, (xs)d/3 (s) 

is well defined and constant on the left cosets of H, so that it determines the 

value at A of a nonzero regular Borel measure/x~ defined on G and carried on 

xH = 6-'({x}). Moreover,  the map ~ ~/.tx (A)  is A-measurable, and we have 

g ( A )  = fo,. g, (A)dA (,~), 

whence the tt~ are seen to satisfy our definition of a strict disintegration. �9 
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Section 2 presents the adjustment and projection theorems together with 

some immediate consequences of the former. Section 3 is devoted to the strong 

lifting property; it includes our characterization of this property a I~d the 

elaboration of Losert 's example. Section 4 is devoted to measurable cross 
sections; specifically, we shall produce (in Theorem 4.4) a A-measurable right 
inverse for the map ~b of Example 1.14 which maps compact sets into relatively 

compact images. 

Except in Section 4, our main results all assume the existence of a lifting. They 

therefore depend for their applicability upon the lifting theorem in its most 

general form, which, when the measure space (X, E, ~ )  is complete, asserts the 

existence of a lifting provided that X constitutes the direct sum mod /~ of a 

family of sets of finite measure. (One amalgamates liftings on subsets of finite 

measure in the manner of Theorem 2.4 below; cf. [3, theorem 1, p. 206].) To a 

lesser extent they also depend upon the extendability of a lifting from a smaller 

tr-algebra to a larger one. This fact follows implicitly from the constructive 

proofs of the lifting theorem (such as in [28]), but appears to be generally valid 

only when the underyling measure is finite. 

2. The adjustment and projection theorems 

The results of this section are unified by the general theme: new liftings from 

old. Our first principal result below will be called the adjustment theorem. 

Essentially it asserts that a lifting may be "adjusted" on a fixed null set in such a 

way that it becomes strong on that null set withrespect  to a given class of "open"  

sets. 

2.1. THEOREM. Let (X, E, IX) be a complete measure space, let N be a ix-null 

set, let F = N c, and let p be a lifting for i.t on (X, "Z). Let ~ be a collection of nonnull 

subsets of X such that c~ U {~} is closed under the formation of finite intersections. 

Then there exists a lifting pN for ix on (X, E) such that: 

(2.1.1) for all x E N, for all G E ~, and for all A E ~, the condition 

x E G C , A  implies that x E pN(A); 

(2.1.2) i f A  EYe, t h e n p N ( A ) n  F = p ( A ) n  F ;  

(2.1.3) hence, if G, G c E ~ n ran(p), then p~(G) = p(G).  

REMARKS. It is important to note that, with obvious changes of notation, this 

result and its proof remain valid when p is a lifting for/~ IF on (F, X IF)-Then 

with ~ = {X}, it gives an "extension" of p from E Ix to E (cf. [16, proposition 12, 
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p. 128]). We do not assume that cg_CE. Provided the elements of ~ are not 

/z-null sets, the theorem applies. 

PROOF. If X ~  ~3, let it be added to q3. Define a density p ~ for/Z on (X, E) by 

p*(A) = cr*(A) U ( p ( A )  N F), 

where r denotes the set of points x E N for which there exists a set G ~ ~3 

such that x E G ~,,A. The properties of a density are straightforward to verify. 

For example, let x E p ~(A) N p*(B). If x E F, then necessarily 

x E p(A)  n p ( B ) n  F = p(A  n B ) O  F C p * ( A  n B). 

If x E N, then there exist sets G, H ~ ~3 such that x E G C , A ,  and such that 

x E H C , B .  It follows that G N H E ~ ,  whence G A H E ~ d ,  whence x E  

cr*(A n B)  c_ p*(A n B). Note that property (1.6) requires the elements of ~ to 

be nonnull, and it also requires at least that U c~ = X. 

By the theorem of von Neumann [23], which is given a strikingly simple proof 

by Traynor in [28, theorem 3, p. 268], we conclude that there is a lifting pN for/Z 

on (X, E) such that p *(A) _C pN (A) for all A E E. (The assumption of complete- 

ness is used here.) Property (2.1.1) is immediate from the definition of p*; 

property (2.1.3) follows from the relations p(G)=p*(G)C_pN(G) ,  together 
with p(G)  c = p(G c) = p*(G~)C_pN(G ~) = pN(G)~; and property (2.1.2) is es- 

tablished in similar spirit. �9 

Our first application of the adjustment theorem amalgamates and generalizes 

a number of known results, some of whose original proofs were lengthy. 

2.2. THEOREM. Let (X, ~,/Z) be a complete measure space, and let p be a 

lifting for tx on (X, ~). Let ~ C_ "2, be a collection of nonnull subsets of X such that 

6e U {0} is closed under the formation of finite intersections, and such that b D is 

"second countable" in the sense that there exists a sequence {B.}~-I in ~ with the 

following property : If x E U E Sr then there is an index n such that x E B,  C ,  U. 

Let ~t be a subalgebra of ~, such that, whenever U ~ 5e and A E ~l satisfy 

/Z (U n A ) = 0, we have/z  ( A )  = O. Then there exists a lifting ~r for/Z on (X, X) 

such that: 

(2.2.1) tr(U) ~_ U for all U E 5e; 

(2.2.2) cr(A )= p (A  ) for all A E ~I. 

NOTE. ~ need not be a ~r-algebra. 
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PROOF. If X ~  5 e, let it be added to 5f. Apply the adjustment theorem with 

N =  ~.J ( B , \ p ( B , ) )  and ~ g = { U A p ( A ) :  U ~ , C T ; A  E , ~ I ; # ( A ) > O } .  

Set or = pN. Then, in view of the "second countable" condition, and of the fact 
that we have p (A  ) C p ( B )  whenever A C ,B ,  property (2.2.1) follows easily from 

(2.1.1) and (2.1.2). And property (2.2.2) follows from (2.1.3). m 

When M = {Q, X}, Theorem 2.2 (always in conjunction with the standard 

lifting theorem) reduces to the principal result of Graf in [9]. (This in turn 

generalizes, for example, [3, proposition 5, p. 407] and [5].) Theorem 2.2 also 

absorbs the essential content of [16, proposition 3, p. 110; proposition 8, p. ! 14; 
theorem 4, p. 115] and, combined with the constructive techniques of [28], will 

yield (a generalization of) [16, theorem 5, p. 118] with no additional technicalities 

(cf. I221). 
Our second application of the adjustment theorem is concerned with the 

"localization" and "globalization" of strong liftings. The following lemma is a 

preliminary localization result. 

2.3. LEMMA. Let ( X, "Z, Ix, ~-) be a topological measure space, let or be a strong 

lifting for Ix on (X, E), and let E, F E Y, be such that E - ~ F  C_ or(E). Then F is a 

carrier of Ix, and, for A ~ Y-It., the identity p (A ) = or (A ) fq F determines a lifting p 

for Ix I~ on (F,~, I~) which is strong with respect to the relative topology Of IF. 

PROOF. It is easy to verify that p is a lifting. (Note that the condition 

F _C or(E) is needed to establish property (1.6).) The fact that p is strong follows 

from the relations 

p ( U  n F)  = or(U n F ) n  F = or(U) n or(F) n/-- 

= or(U) A or(E) f3 F = or(U) f'l F_D U n F, 

which are valid for all open sets U. It necessarily follows that Ix is carried on F. �9 

2.4. THEOREM. Let (X, ,Y,,, Ix, J-) be a complete topological measure space, and 

assume that tx is carried on X. 

(2.4.1) If  Ix has the strong lifting property, and if E is a carrier of Ix, then 
the space (E,,~ I~-, Ix I~, f f  ]e) has the strong lifting property. 

(2.4.2) I f  X is the direct sum mod Ix of a family {X~} of carriers of Ix such 

that Ix Ix, has the strong lifting property (with respect to 3- I,x'~ for 

all ct, then Ix itself has the strong lifting property. 
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PROOF. To prove (2.4.1), let F = E A tr(E),  and let p be the strong lifting for 

p. on (F, ~ Iv) which was defined in Lemma 2.3. Since/z is actually carried on E, 
we may apply (the alternate version of) the adjustment theorem with N = E \ F 
and ~ =  3-1~ to "extend" p to a strong lifting for /z  [E on (E, 5`[E). 

To prove (2.4.2), let F =  I,.J~X,. Then by (1.1), we have FES" ,  and by (1.2), 

we have /~(F c) = 0. For each index a, let o-, be a strong lifting for /z Ix. on 

(X,, 5" Ix,)-Then, for A E E IF, the usual formula 

o - (A)=  U t r , (A AX..) 
a 

defines a strong lifting tr for /z  Iv on (F, ~ Iv). Note that property (1.7) requires 
the X~ to be pairwise strictIy disjoint. Since/~ is carried on X, we may apply the 
adjustment theorem (as before) with N = F c and ~ = 3-. �9 

Theorems 2.2 and 2.4 combine with the lifting theorem to yield a general 

sufficient condition for the existence of a strong lifting. The key conditions are 

that the space be locally second countable and globally decomposable into a 
direct sum. 

2.5. COROLLARY. Let (X, 5",/z, 3-) be a complete topological measure space. 

Assume that tx is carried on X, and that X constitutes the direct sum mod/x  of a 

(pairwise disjoint) family {X~} _C ~ such that, for all .a: 

(2.5.1) /x (X,,) < oo; 

(2.5.2) X~ is a carrier of tz ; 

(2.5.3) X~ is second countable in its relative topology. 

Then (X, E,/z, 3-) has the strong lifting property. (Indeed it suffices merely to 

assume, in place of (2.5.1), that a lifting for tz [x~ exists.) �9 

By the arguments of [3, proposition 41, p. 337], a locally compact Hausdorff 

space equipped with a regular Borel measure/~ constitutes the direct sum rood/z 
of a family of compact carriers of /z. Therefore, in view of Corollary 2.5, 
Theorem 2.4 generalizes [16, proposition 2, p. 108; theorem 3, p. 109; remark 1, 
p. 127] as well as [16, theorem 10, p. 131]. 

2.6. COROLLARY. Let (X, 5`, IX, 3-) be a totally or-finite topological measure 

space, and let u be a totally g-finite measure with domain 5`. Assume that both tx 

and u are carried on X. Then the following assertions are valid if it is understood 

that 5` is first completed with respect to any measure which is asserted to have the 

strong lifting property : 
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(2.6.1) I f  IX has the strong lifting property, and if v is absolutely 

continuous with respect to Ix, then u has the strong lifting property. 

(2.6.2) The measure ix + v has the strong lifting property if and only if tx 

and v both have the strong lifting property. 

PROOF. We may assume that IX and v are finite without affecting the 

respective tr-ideals of null sets. To prove (2.6.1), let X1 be the complement of a 

u-null set of maximal/z-measure. Note that IX and u share the same null subsets 

of X1. If necessary, remove a null set from XI so as to ensure that X, C_ tr(X~), 

where o, is a strong lifting for IX on (X, E). Apply Lemma 2.3 and then (2.4.2) 

with X the (trivial) direct sum mod u of the singleton {XI}. 

Condition (2.6.2) is established in similar spirit. Let {X,, X2, X3} be a partition 

of X such that IX(X,) -- 0; such that v(X:) -- 0; and such that IX, v, and IX + v 
share the same null subsets of X3. Let tr and r be strong liftings for IX and v, 

respectively, on (X, E). If necessary, remove a (IX + v)-nuli set from each X~ so as 
to ensure that X~ C_ z(X~), that X2 C_ o'(X2), and that X3 C_ tr(X3) 71 r(X3). Apply 

Lemma 2.3 and then (2.4.2) with X the direct sum mod IX + v of {X,, X2, X3}. �9 

Our second principal result below will be called the projection theorem. 

Essentially it asserts that, in the presence of a strict disintegration, a strong lifting 

for the disintegrated measure may be "projected" onto a strong lifting for the 

disintegrating measure (cf. [12]). 

2.7. THEOREM. Let (X, E, IX, J~) and (Y, Y, v, ~-2) be topological measure 

spaces, with the latter space assumed to be complete. Let to : X - ~  Y be a 

continuous surjection which induces a strict disintegration {ixy }y~v of Ix with respect 

to v on (X, E). Assume that to is measurable in the sense that tO t(A ) E "2, for all 

A E Y. I f  under these conditions there exists a strong lifting tr for IX on (X, 3". ), 
then v has the strong lifting property. 

REMARKS. The slight delicacy here is that strict disintegrations, as we have 

defined them, do not commonly exist on (X, E,) ,  whereas strong liftings do not 

commonly exist on (X,)2,). The measurability assumption on 4, is superfluous 

when v is finite, for then a strong lifting for u which is defined on the completion 

(with respect to v) of the tr-algebra generated by J2 can be extended to Y. The 

fact that the disintegration must be induced on all of (X,E) (rather than on 

(X, 5e) for some ~ C_ E) will necessitate a local application of this theorem in 

Proposition 4.3 below. 

PROOF. If (1.10) or (1.11) fails for any y ~ Y, replace Ixy by a point mass at an 
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arbitrarily selected point x E ~O '({y}). By this device, (1.10) and (1.11) become 

valid for every point y E Y, while (1.12) suffers no damage. 

By the yon Neumann-Traynor theorem which was used in the proof of 

Theorem 2.1, it suffices to define a strong density for u on (Y, Y). To this end, let 
A E Y, and define 

p * ( A ) = { y  E Y 'o - (~  '(A )) ~,, X}. 

Let us verify first that p*(A)~,A. Define E = ~ - ' ( A ) A  ~r(~-'(A)). Then we 

have E CN, where N E E ,  and tz(N)=ftzy(N)du(y)=O. Therefore there 

exists a "bad"  u-null set B such that E is tzy-null for all y ~ B. We propose to 
show that p*(A)•A C B. This we establish by fixing a point y E B  c and by 

showing that y E A  if and only if y ~p*(A). The significance of y E B  c is that 

' (A)--~ or (~ ' (A)) .  If y E A  as well, then we have ~ ~(A)~-~X simply by 

the fact that /zy is supported on &-~({y})_C~-~(A). Hence y Ep*(A). Con- 

versely, if y E p*(A) (as well as Be), then we have X-~,yo-(~b-t(A))~,ff  '(A). 

But /x~(X)>0, whence y E A, for otherwise we achieve the contradiction 

~b-'(A ) ~,,, ~ .  

The remaining properties of a density are straightforward to verify. For 

example, let y Ep*(A)Np*(B), where now the sets A,B E Y  are arbitrary. 

Then we have o ' ( ~ - ' ( A ) ) ~ X ~ r ( ~  '(B)), so that X - ~ o - ( ~ - ' ( A ) ) f q  

o '(~- ' (B))  = o-(~b-'(A A B)), whence y ~ p*(A fq B). Note that property (1.6) 

(also) requires that /zy ( X ) >  0 for all y E Y. 
It remains to show that p*(U)D U for all U E 3-2. By continuity of ~, and by 

the fact that o- is strong, we have, for all y@ U, that ~ ' ({y})C~ ~(U)C 
o'(tp '(U)),sothat, againby(1.11),a(~ ~(U))-~ X, givingy Ep*(U). �9 

3. The existence and non-existence of strong liftings 

This section is devoted to a counterexample and a theorem concerning the 

existence of strong liftings. Losert's celebrated counterexample [20] (cf. [8]) 

settled the long-standing question as to whether a regular Borel measure carried 

on a compact Hausdorff space has the strong lifting property. A negative 

example of a similar sort appears in [27, theorem 5, p. 171]. We shall employ the 

projection theorem to extend Losert's example to compact Hausdorff spaces of 

arbitrarily high weight, where the weight of any topological space is defined to 

be the smallest cardinal number K for which there exists a neighborhood basis 

for the topology of cardinality K. 

To avoid trivialities we introduce the following concept. 
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3.1. DEFINITION. It will be said that a topological measure space (X, E, ,z, J )  

(or just IX) everywhere fails the strong lifting property if, for all A E E, the space 

(A, Y la, IX ]a, 37 ]a )fails to have the strong lifting property. �9 

It is not (now) difficult to see that such spaces exist, If Losert 's example does 

not aJready possess this property, then, in view of Theorem 2.4, a standard 

exhaustion argument will yield a subspace which does. And by the regularity of 

the measure, the subspacc can be taken to be compact. 

It is perhaps not surprising that an example of this sort will "poison" any 

product of which it constitutes a factor. 

3.2. EXAMPI,E. For each cardinal number K _-> ~ ,  we shall exhibit a regular 

Borel measure carried on a compact Hausdorff space of weight K which 

everywhere fails the strong lifting property. The foregoing discussion yields a 

compact Hausdorff space X of weight =<N2 and a regular Borel measure IX 

carried on X which everywhere fails the strong lifting property. Let v be any 

regular Borel measure which is carried on a compact Hausdorff space Y of 

weight K. (For example, v might be product Lebesgue measure on K many 

copies of the unit interval [0,i].) Then X x Y has weight K, and we propose to 

show that the measure IX x v, regarded as a regular Borel measure on X x Y, 

everywhere fails the strong lifting property. 

To this end, first recall the notation and content of Example 1.13. Now 

suppose, to the contrary, that # x v Ic., does possess that strong lifting property 

(always with respect to the relative topology) for some set Co @ E. By Theorem 

2.4, Co may be supposed to be compact. Define K,. = 7r(C,), and let K be any 

nonnull compact carrier of IX such that K _C {x • X : ~,, (C,,) > 0}. Now define 

C -- C, f"l zr ~(K). Then by property (1.11), we have v , ( C ) > 0  for every point 

x ~ K. If necessary, remove a relatively open (IX x v)-null set from C so as to 

ensure that C is a carrier of # x v. Since K is a carrier of IX, the function rr will 

still map C onto K, whereas the function vx (C) will become 0 for at most a 

Ix-null set of points x in K. It follows that the family {v~ I('},~K constitutes a strict 

disintegration of # x v Ic with respect to p, }K induced on (C, N(C))  by ~" Ic- By 

Theorem 2.4, tx x v Ic has the strong lifting property, so that, by the projection 

theorem, Ix [K will inherit this property. But then the fact that Ix everywhere fails 

the strong lifting property is contradicted. �9 

This argument shows, in particular, that if Ix x v does have the strong lifting 

property, then so also do Ix and v. 

3.3. QtJESTION. IS the converse true? If Ix and v are regular Borel measures 
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on compact Hausdorff spaces, and if p~ and v both have the strong lifting 

property, then does the measure/x x v have the strong lifting property? �9 

These examples all highlight the importance of characterizing the strong lifting 

property. The literature contains at least two such characterizations, one [12] in 

terms of the existence of strict disintegrations, and another [13] in terms of the 

existence of measurable right inverses (see also [21, theorem 1, p. 154]). We now 

propose an internal characterization of strong liftings in terms of their behavior 

on the topology 3_. 

If ~r is a strong lifting for a measure p~, and if U is an open set, then the set 

er(U) constitutes a "measure theoretic closure" of U which satisfies (at least) 

properties (3.4.1)-(3.4.6) below. With mild restrictions upon/x, the existence of a 

"closure" operation which satisfies these properties will be sufficient to guaran- 

tee the existence of a strong lifting for/x. The original idea of the proof was to 

adjust an arbitrary lifting p at every (null) point x so as to obtain a lifting px 

which was strong at x, and then to piece the p, together into a global strong 

lifting. However, once it became clear what conditions were needed to imple- 

ment the piecing together procedure, the p and the p~ were seen to be 

superfluous. What remained was a manipulation with ultrafilters which owes a 

clear debt to the proof of theorem 3 in [28, p. 268], and also to the proof of 

Theorem 2.1 Here is the result. 

3.4. THEOREM. Let (X, E, IX, 9-) be a complete topological measure space. 

Assume that tx is regular (in the sense of (1.3)) and that X is the direct sum rood 

of a family {X,} of sets of finite measure. For each open set U, let there be given a 
set cl(U) @ E with the following properties, which are to hold for all U, V ~ • : 

(3.4.1) cl(U) C_ 0 ;  

(3.4.2) cI(U) ~ ,  U; 

(3.4.3) if U ~, ,X,  then cI (U)= X; 

(3.4.4) cl( U U V) C_ cl(U) U cl(V). 

Assume, moreover, either that X satisfies the T3 separation axiom, or that cl 

satisfies the following two conditions, also valid for all U, V E J': 

(3.4.5) U C_ cl(U); 

(3.4.6) if U ~ V, then ci(U) = cl(V). 

Then there exists a lifting cr for IX on (X, ~) which satisfies U C_ tr(U)  C_ ci(U) for 

every open set U. 



VOI. 44, 1983 STRONG LIFTINGS 255 

NOTE. The X~ need not be carriers of /z  ; indeed, p. plays a minimal role in 

the proof to follow. 

PROOF. For x ~ X, define 

K~ = {K _C X : K closed; x E cl(KC)C }. 

Then assumption (3.4.1) implies that 5(, contains the closed neighborhoods of x ; 

assumption (3.4.2) implies that, for every closed set K, we have K E 5(, for 

almost all x E K;  assumption (3.4.3) implies that 5(~ contains no ~-null sets; and 

assumption (3.4.4) implies that 5(~ is closed under the formation of finite 

intersections. Therefore, by Zorn's lemma, there exists an ultrafilter q/~ which 

contains 5(,, 

Let us assume for the moment that the 0//~ may be obtained in such a way that 

(3,4.7) for all x E X, for all U E 3-, and for all A E E, the condition 

x E U C , A  implies that A E ~ , .  

Then for A E E, define 

or(A) ={x E X : A  E ~ 

We propose to show that or is the desired lifting. Properties (1.6)-(1.8) are 

immediate from the properties of ultrafilters (cf. [28, p. 268]). In view of this, 

property (1.5) will follow once it is seen that no null set N can belong to any of 

the 0//, (from which o r ( N ) = ~  follows). However, since X ~ , , N  c, this is 

immediate from condition (3.4.7). It is property (1.4) whose proof will utilize the 

stated assumptions about the measure/x. By (1.6)-(1.8), it suffices to prove that 
almost every point of an arbitrary set A E E belongs to or(A ). I f /z(A ) < co, then, 

by the regularity of/x, there is a sequence {K, } of closed subsets of A such that 

A ~-, U~.1K, .  Since K, ~ 5(, _C 0//, for almost every x E K, (and for all n), it 

follows that almost every x in each of the K,, and hence almost every x in A, 

belongs to or(A). If/z (A) = 0% the foregoing argument applies to each of the sets 

A n X,,  so that (1.2) yields the same conclusion. This establishes (1.4), and 

hence the fact that or is a lifting for/z on (X, E). That or is strong follows at once 

from condition (3.4.7); that or(U)C cl(U) for all U E f f  follows by observing 

that if x ~ cl(U) c, then U" Us(~ C ~ so that x E or(U') = or(U) ". 
To complete that proof of the theorem, it remains to verify that the q/, may be 

chosen in such a way as to satisfy condition (3.4.7). To this end it suffices to show 

that any set A as in (3.4.7) has nonnull, and hence nonempty, intersection with 

an arbitrarily chosen set K E 5~ ; moreover, it suffices to assume as well that A 

is an open neighborhood U of x. If X is a T3 space, then, by definition, U 
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contains a closed neighborhood W of x. In this case we already know that 

W n K, and hence U n K, are nonnull. Let us deduce the same conclusion from 

(3.4.5) and (3.4.6) by deriving a contradiction if it is supposed that/ .~(U n K)  = 
0. For then we would have K c U  U-~,K c, so that x E U C_KCU U C_ 
cl(K~ U U)=cl (KC) .  But K ~Y/x, so that, by definition of 3~x, we have 

x ~ cl(K c). �9 

3.5. DIsCUsslor~. It is to be emphasized that the "cl" operation must be 

defined for every open set, and not, say, for just a collection of basic open sets. 
For example, if we restrict our attention to the open sets with null boundary, 

then the ordinary closure operation, cl(U) = 0, will clearly satisfy (3.4.1)-(3.4.6). 

If /z is a Borel measure on a locally compact Hausdorff space, then, by 

Urysohn's lemma and the little argument in [4, p. 316], these sets form a basis for 

the topology; nevertheless, by Example 3.2, /z can everywhere fail the strong 

lifting property. We therefore do not anticipate any trivial applications of 

Theorem 3.4. 

A lack of trivial applications may suggest that, from the measure theoretic 

point of view, an arbitrary open set is scarcely less mysterious than an arbitrary 

measurable set. For example, it is easy enough to see that there exists a (strong) 

lifting tr for Lebesgue measure such that o-[a, b) = [a, b) whenever a < b. Thus: 

if A is a Lebesgue measurable subset of the real line, define F(x)= fo)cA (t)dt, 
and apply the classical Lebesgue theory to deduce that the derivative F'  is well 
defined and equal to XA almost everywhere. It follows that the identity 

t r*(A) = {x : h-o*lim F(X +h)-F(X)=h I} 

determines a density o'* for which any corresponding lifting r (i.e. such that 
tr*(A ) C  tr(A )) is clearly as desired (cf. [16, theorem 6, p. 1231). The point is that 

if the classical theory were any easier to establish for an arbitrary closed (as 

olSposed to measurable) set, then, with c l ( U ) =  o'*(UC) c, Theorem 3.4 would 

yield a corresponding simplification in the construction of or. �9 

4. Measurable cross sections in locally compact groups 

As pointed out in [6], many constructions in the theory of locally compact 

groups depend for their validity upon the existence of "reasonably well 

behaved" cross sections for the cosets G/H (as defined in Example 1.14). The 

last decade has witnessed a burgeoning of general measurable selection 

theorems (see [29] and [30]), and it is the aim of this section to demonstrate that 

one of the most general of these is applicable in the group setting. 
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We shall use the notation and content of Example 1.14 throughout, except 
that an arbitrary element of G / H  will often now be denoted by y in place of ~. 
Also define Y_, = ~,  (G) , ,  and define Y = ~ (G/H)a. To facilitate the application 
of the projection theorem, we exploit the existence of a nonnegative, bounded, 
continuous function b on G such that 

f b(xs)dE (s) = 1 

for all x E G ([2, p. 103]; see also [2, proposition 8, p. 51]). Let S~ denote the 
support of b, i.e. the closure of the set {x E G "b(x)>0}.  Then we may, and 

shall, assume that Sb has compact intersection with the saturant CH of every 

compact subset of C of G. Since the canonical map ~b is open as well as 
continuous, it follows that 

(4.1) for every compact set K C G/H, 

the set 0 '(K) N Sb is compact. 

Another vital property of the set Sb is the obvious fact that f ,  Xs~(xs)d~(s)> 0 
for all x E G. Since the quotient a /8  is strictly positive on H, it follows that we 
have 

(4.2) /X~(Sb)=O(x) ' ~(s)Xs(xs)d~(s)>O 

for all x E G .  

The existence of measurable selections in the absence of separability assump- 
tions almost requires a strong lifting [21, theorem 1, p. 154], and indeed the 

precise measurability properties of the selection can be related to corresponding 
properties of the Boolean algebra homomorphism which is used to construct it 

[21, remark, p. 155]. Therefore the following application of the projection 
theorem appears to be crucial. 

4.3. PROPOSITION. The quasi-invariant measure A on G / H  has the strong 
lifting property. 

PROOF. It is obvious that A is carried on G/H. By Theorem 2.4 and the 

arguments in [3, proposition 41, p. 337], it suffices to obtain a strong lifting for 

A I~r on (K, YI~ ), where K is a compact carrier of A. To this end, define 

C -- 0-~(K) n S~, and note that C is compact by (4.1). Upon removing a/x-null 

set from C, if necessary, we may ensure the existence of a strong lifting for/x ]c 

on (C,~ Ic) by applying Theorem 2.4 and the vital [15, proposition 1, p. 66]. In 



258 J. KUPKA Isr. J. Math. 

view of (1.11) and (4.2) the fact that this lifting may be projected onto a strong 

lifting for AIr  follows by the arguments of Example 3.2 with /x, A, tp, and p., 
(y = :~) in place of ~t x v,/z, ~r, and vx, respectively. �9 

We are now prepared for the major result of this section, which asserts the 

existence of a A-measurable cross section from G / H  into G.. 

4.4. THEOREM. Let the notation of Example 1.14 be given. Then there exists a 

]:unction 0 : G / H  --~ G with the following properties : 

(4.4.1) forall  y E G/H,  we have 6(O(y))  = y ; 

(4.4.2) for all A E ~ ( G ) (resp. N~ (G); resp. N,(G)),  
we have 0 ' (A ) E ~ ( G / H ) ,  

(resp. N,, ( G / H ) ,  ; resp. Nt ( G / H ) ,  = Y); 

(4.4.3) for every compact set K C G/H,  

the set O(K) is relatively compact in G. 

REMARKS. In fact we shall obtain such a 0 with values in Sb. The key 

selection theorem of Graf [10, theorem 5, p. 348] may be applied either locally or 
globally. The former approach seems to be marginally easier; moreover,  the 

special case of Graf's theorem which is then utilized admits a relatively simple 

proof. 

PROOF. Let K be a compact carrier of A, and define the compact set 
C =  $ - ~ ( K ) A &  as before. We propose to apply Graf 's theorem with 

(K, YIK,A IK) in the role of Graf's space (X,M,/~), and with C in the role of 
Graf's space Y. It will yield a right inverse 0 for $ ] c  which is measurable with 

respect to Y IK and ~ ( C ) ,  where ~ ( C )  denotes the usual Borel subsets of C [10, 

p. 346]. To this end, for y G Y, define F (y )  to be the nonempty compact set 

~b-'({y}) n C. We have seen in Proposition 4.3 that A ],, has the strong lifting 

property, so it remains to verify that the set function F is upper semicontinuous 

in the sense of [10, p. 347]. But this is immediate, for if A C_ C is closed, then the 

set F ' (A),  as defined in [10, p. 343], is simply the compact set $ (A) .  The 

applicability of Graf 's theorem follows. 

To complete the proof of the theorem, we globalize this result. Following 

again the arguments of [3, proposition 41, p. 337], we realize G / H  as the direct 
sum mod A of a family {K,,} of compact carriers of A. With C~ defined for each a 
to be the set $ ~(K,) N S~, we determine 0 on K,~, with values in Co, exactly as in 

the last paragraph. If y ~  U o  Ks, let 0(y)  be an arbitrarily chosen element of 
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$-'({y})tq S~. Then O, thus defined, satisfies condition (4.4.1) by construction, 
and, in view of (4.1), satisfies condition (4.4.3) by virtue of being S~-valued. Since 

~(C~) = ~ t (G) lc  ~ for each a, it is immediate from property (1.1) that 0 ~(A)E 
Y whenever A E ~ (G). The measurability of O with respect to ~ (G/H)A and 

~ ,  (G) follows once it is recognized: first, that every set A E ~ ,  (G) is contained 

in a countable union of compact sets (so that the inverse image 0 ~(A)C $(A)  

has the same property); and second, that we have ~ ( G / H ) ~  IB = for every 

set B E ~, ,(G/H).  A similar argument shows the measurability of 0 with 

respect to ~ (G/H)~ and ~ ,  (G). Thus condition (4.4.2) is established, and the 
proof is complete. �9 

The most usual employment of cross sections in the group setting involves 

their combination with the group (or other) operations into more elaborate 

functions f, such as [(x) = O(x)-'x (x E G). (See [25, p. 872], [11, p. 92], [18, p. 

167; lemma 1, p. 168], and [19, p. 66],) These functions are meant to inherit 

measurability properties from corresponding properties of 0. If 0 satisfies an 
"inverse image" criterion of measurability, as in Theorem 4.4, then in general, 

because of the delicacies involved in product o'-ring structure, it only seems 

possible to establish that the [ inverse images of Baire sets are measurable, and 

measurable moreover in the same sense that the 0 inverse images of locally 
Baire sets are measurable. (For the particular / and 0 above, the [ inverse image 

of a Baire subset of H will belong to ~ (G)~.) This state of affairs seems to be 

adequate for the applications of [18] and (llJ, but not for [251, and so, in view of 
[2l, remark, p. ]55], we ask: 

4.5. OUESTION. Can the cross section 0 be constructed to be Borel measur- 
able (in the sense of [6, theorem 1, p. 456]), or Baire measurable (in the sense of 
[25, proposition I, p. 872])? �9 

The somewhat delicate measurability questions associated with the inverse 
image criteria of measurability become considerably more transparent if 0 can 
be taken to be Lusin A-measurable. By this we mean: For every set E of finite 

A-measure, and for every number e > 0, there exists a compact subset K of E 

such that A ( E \ K ) <  e, and such that 0 IK is continuous. (For example, if 0 is 

Lusin A-measurable, then the particular function f above is easily seen to be 

Lusin /z-measurable, and hence measurable with respect to ~ t ( G ) ,  and 

~ ( H ) . )  Since this condition is explicitly assumed in [11, p. 89], we ask: 

4.6. QUESTION. IS the cross section 0 which was obtained in Theorem 4.4 
Lusin A-measurable? �9 
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From properties (4.4.2) and (4.4.3) alone, the answer is certainly yes when the 

group G is first countable. Beyond this we do not know what the situation is, and 

so we ask, finally: 

4.7. QUESTION. Can strong liftings be used to obtain Lusin measurable 

selection mappings? �9 
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